设这个等腰三角形为△ABC,其中AB=AC,则底角∠B=∠C
作AD⊥BC于D,则∠1=∠2
∵sin∠B=5/13
∴cos∠B=12/13,tan∠B=5/12
∴sin∠1=12/13,cos∠1=5/13,tan∠1=12/5
∵∠BAC=2∠1
∴sin∠BAC=sin2∠1
=2sin∠1·cos∠1
=2×(12/13)×(5/13)
=120/169
cos∠BAC=cos2∠1
=1-2(sin∠1)²
=1-288/169
=-119/169
tan∠BAC=sin∠BAC/cos∠BAC
=(120/169)/(-119/169)
=-120/119