已知:PA=根号2,PB=4,以AB为一边作正方形ABCD,使P,D两点落在直线AB的两侧.角APB为何值PD最大
人气:377 ℃ 时间:2019-12-13 22:03:01
解答
当∠APB=135°时,PD最大.证明如下:过A作AQ⊥AP,使Q、B在AP的两侧,且QA=PA.∵ABCD是正方形,∴AD=AB、∠DAB=90°.∴∠PAD=∠PAB+∠DAB=90°+∠PAB=∠PAQ+∠PAB=∠QAB.由QA=PA、AB=AD、∠QAB=∠PAD,得:...
推荐
- P是正方形ABCD外一点,P在平行边AB、CD之间,PA=根号17,PB=根号2,PC=根号5,求PD的长
- 在四棱锥P-ABCD中,底面ABCD是正方形,AB=PD=a,PA=PC=2a. (Ⅰ)求证:PD⊥平面ABCD; (Ⅱ)求异面直线PB与AC所成的角; (Ⅲ)求二面角A-PB-D的大小.
- 已知:PA=根号2,PB=4,以AB为一边作正方形ABCD,使P,D两点落在直线AB两侧,当∠APB=45°时,求AP及PD的长
- PA=根号2 PB=4以AB为一边的正方形ABCD,使P,D两点落在直线AB的两侧.求PD的最大值及角APB的大小
- 在四棱锥P-ABCD中,底面ABCD是正方形,AB=a,PD=a,PA=PC=根号2a.求异面直线PB与AC所成角的大小
- I’d like(非缩略形式)
- financial crisis in western countries reason how to solve it
- 有关原核生物DNA复制过程中,RNA引物的叙述,哪项是正确的?
猜你喜欢