在三角形ABC中,若cosA=5/13 ,sinB=3/5,cosC=?
人气:427 ℃ 时间:2020-01-27 19:14:19
解答
在三角形中cosA=5/13,sinB=3/5
sinA=12/13,dangB为锐角时cosB=4/5,为钝角时cosB=-4/5
cosC=cos(π-A-B)=-cos(A+B)=-(cosAcosB-sinAsinB)
sinC=sin(π-A-B)=sin(A+B)=sinAcosB+sinBcosA
当cosB=4/5时cosC=16/65,sinC=63/65
当cosB=-4/5,cosC=56/65,sinC=-33/65
因为三角形中sinC>0,所以
cosC=16/65
推荐
猜你喜欢
- x+y=1,则代数式½x²+xy+½y²的值是什么
- 15%相当于25%的( )%
- 若cos(pai+a)=-1/3,那么sin(3pai/2-a)=
- 在语文课程总目标中为什么要强调课外阅读,并且规定九年课外阅读总量应在400万字以
- 在三角形ABC中,角ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.试探究:当三角形ABC满足什么条件时,CF垂直于BC(点C、FC重合除外)?画出相应图形,并说明理由
- 过氧根和超氧根的计算
- zyz/where the skies are blue ,to see you once again .
- 原电池正负极与电解池正负极一样吗?