> 数学 >
已知:如图,△ABC和△DBE均为等腰直角三角形.

(1)求证:AD=CE;
(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由.
人气:360 ℃ 时间:2019-07-31 03:14:59
解答
(1)∵△ABC和△DBE均为等腰直角三角形,
∴AB=BC,BD=BE,∠ABC=∠DBE=90°,
∴∠ABC-∠DBC=∠DBE-∠DBC,
即∠ABD=∠CBE,
∴△ABD≌△CBE,
∴AD=CE.
(2)垂直.延长AD分别交BC和CE于G和F,
∵△ABD≌△CBE,
∴∠BAD=∠BCE,
∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,
又∵∠BGA=∠CGF,
∴∠AFC=∠ABC=90°,
∴AD⊥CE.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版