> 数学 >
求(sinx-cosx+1)/x在0~180度的最小值
人气:324 ℃ 时间:2020-06-19 11:33:00
解答
答:
f(x)=(sinx-cosx+1)/x在(0,π]的最小值
求导:
f'(x)=(cosx+sinx)/x-(sinx-cosx+1)/x^2
=(xcosx+xsinx-sinx+cosx-1)/x^2
设g(x)=xcosx+xsinx-sinx+cosx-1
求导:
g'(x)=cosx-xsinx+sinx+xcosx-cosx-sinx
=(cosx-sinx)x
当0
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版