∴m2=4(n-1)且m≠0,则n-1>0.
方程②中△=4m2-4m2(-m2-2n2+3)=4m2(1+m2+2n2-3)=8m2(n+3)(n-1).
∵n-1>0.
∴△>0.方程②必有两个不相等的实数根.
(2)由m2=4(n-1),得n-1=
| m2 |
| 4 |
| m2 |
| 4 |
| 2 |
| m |
把
| 2 |
| m |
m2×(
| 2 |
| m |
| 2 |
| m |
整理得2n2+4n=7.
∴m2n十12n=n(m2+12)
=n(4n-4+12)
=4n2+8n
=2(2n2+4n)
=14.
| m2 |
| 4 |
| m2 |
| 4 |
| 2 |
| m |
| 2 |
| m |
| 2 |
| m |
| 2 |
| m |