> 数学 >
关于导数高数证明题!
设f(x)=a1sinx+a2sin2x+…+ansinnx,并且|f(x)|小于等于|sinx|,a1,a2,…,an为常数.证明|a1+2a2+…+nan|小于等于1.
人气:130 ℃ 时间:2020-04-10 16:35:54
解答
f'(x)=a1cosx+2a2cos2x+…nancosnx
据导数定义
|f'(0)|=|lim_{x->0}(f(x)-f(0))/(x-0)|
=|limf(x)/x|=lim|f(x)|/|x|
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版