> 数学 >
设n阶矩阵A的伴随阵为A*,证明:(1)若|A|=0,则|A*|=0
秩是什么没学过,也看不懂
用反证法做的我也看不明白
如果用反证法写清楚下
人气:228 ℃ 时间:2019-08-21 22:59:44
解答
若|A|=0 假设|A*|不等于0 则A*可逆 即(A*)^-1乘以A*=E
则A=AA*(A*)^-1=|A|(A*)^-1=0
即A为0矩阵 它的伴随矩阵也是0矩阵 这与|A*|不等于0矛盾
得证
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版