| a | 
| sinA | 
| b | 
| sinB | 
| c | 
| sinC | 
∴a=2RsinA,b=2RsinB,c=2RsinC,
代入已知的等式得:
| cosB | 
| cosC | 
| sinB | 
| 2sinA+sinC | 
化简得:2sinAcosB+sinCcosB+cosCsinB
=2sinAcosB+sin(C+B)=2sinAcosB+sinA=sinA(2cosB+1)=0,
又A为三角形的内角,得出sinA≠0,
∴2cosB+1=0,即cosB=-
| 1 | 
| 2 | 
∵B为三角形的内角,∴∠B=
| 2π | 
| 3 | 
(2)∵a=4,sinB=
| 
 | ||
| 2 | 
| 3 | 
∴S=
| 1 | 
| 2 | 
| 1 | 
| 2 | 
| 
 | ||
| 2 | 
| 3 | 
解得c=5,又cosB=-
| 1 | 
| 2 | 
根据余弦定理得:
b2=a2+c2-2ac•cosB=16+25+20=61,
解得b=
| 61 | 
