a |
sinA |
b |
sinB |
c |
sinC |
∴a=2RsinA,b=2RsinB,c=2RsinC,
代入已知的等式得:
cosB |
cosC |
sinB |
2sinA+sinC |
化简得:2sinAcosB+sinCcosB+cosCsinB
=2sinAcosB+sin(C+B)=2sinAcosB+sinA=sinA(2cosB+1)=0,
又A为三角形的内角,得出sinA≠0,
∴2cosB+1=0,即cosB=-
1 |
2 |
∵B为三角形的内角,∴∠B=
2π |
3 |
(2)∵a=4,sinB=
| ||
2 |
3 |
∴S=
1 |
2 |
1 |
2 |
| ||
2 |
3 |
解得c=5,又cosB=-
1 |
2 |
根据余弦定理得:
b2=a2+c2-2ac•cosB=16+25+20=61,
解得b=
61 |