线性代数问题 已知三元非齐次线性方程组AX=β 的系数矩阵A的秩为1,
已知三元非齐次线性方程组AX=β 的系数矩阵A的秩为1,且列矩阵X1=(1 0 2) 列矩阵X2=(-1 2 -1) 列矩阵X3=(1 0 0)为AX=β的三个解向量(1)求导出组AX=0的一个基础解系 (2)求AX=β的全部解
人气:294 ℃ 时间:2020-03-26 10:49:55
解答
因为矩阵A的秩为1
所以AX=0的基础解系的基数为2
又X1,X2,X3是三个解向量
所以X1-X2=列向量(2,-2,3)和X1-X3=(0,0,2)是AX=0的基础解系
AX=β的解为通解加特解,它的解为
C*列向量(2,-2,3)+D*列向量(0,0,2)+列向量(1,0,2)
其中C,D为任意实数
推荐
- 设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充分必要条件是( ) A.r=n B.r<n C.r≥n D.r>n
- 设三元非其次线性方程组AX=B的系数矩阵的秩为2,YI,Y2是他的两个解向量,已知YI=(1,2,3),Y2=(3,1,8),求AX=B
- 已知三元非齐次线性方程组Ax=b的系数矩阵的秩为2,并且,α1,α2,α3,是其三个解向量,其中α1=(1.1.1)T,α2+α3=(2.4.6)T,求方程组的通解.
- 已知三元非齐次线性方程组Ax=b ,系数矩阵的秩R(A)=2 ,a1,a2是Ax=b 两个不同的解,则Ax=0的通解
- 设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3 是它的三个解向量,且
- 丑小鸭和我的作文
- 地球半径为R,地面上重力加速度为g,在高空绕地球做匀速圆周运动的人造卫星,其线速度可能为?我算到gr^2 但答案为(gr/2)^2 为什么
- 有两桶油,第一桶油是第二桶油的1.5倍,如果从第一桶油中倒入第二桶4千克,两用油相等
猜你喜欢