关于等价无穷小替换的问题,不要背结论,要知道原理,尤其是做对了也要知道为什么是对的,否则跟猜对的没什么区别.
对于你给的具体问题,要注意x->0+时
lim ln(tan2x)/ln(2x) = 1 + lim [ln(tan2x)-ln(2x)]/ln(2x) = 1
所以才能导致等价无穷小的替换.
当然,我认为这样的替换没什么价值,证明可以替换的难度和原问题相当,只不过是便于你使用L'Hospital法则而已,但这类问题根本不需要用L'Hospital法则就能解决.
再把你的问题抽象一下,在某个变化趋势(比如x->a)下,lim f(x)/g(x)=1,h(x)具有一定的连续性,那么是否可以保证lim h(f(x))/h(g(x))=1也成立?
一般来讲结论是不对的,给你个反例:
x->0时,f(x) = 1/x^4,g(x) = 1/x^4+1/x^2,h(x) = e^x
如果你一定要无穷小量而非无穷大量也可以,比如
x->0时,f(x) = x^2,g(x) = x^2+x^4,h(x) = e^{-1/x^2}可以