连续型随机变量X的分布函数为F(x)=A+Barcsin(x/a)
F(x)=﹛0 x≤-a
A+Barcsin(x/a) -a<x<a(a>0)
1 x≥a
试求:(1)系数A、B (2)求P(┃x┃<a/2)(3)X的分布密度函数
人气:188 ℃ 时间:2019-10-23 02:29:34
解答
(1) x-a,且x 趋近于-a时,lm F(x)=A-B*(pi/2) 令F(-a)=lm F(x)=A-B*(pi/2) 即得:A-B*(pi/2)=0.
由上述两式,解得:A=1/2,B=1/(pi).
(2) P(┃x┃<a/2)=P(-a/2
推荐
- 设连续型随机变量X的分布函数为 F(x)=a+b*e^-x,x>0 ,求
- 设连续型随机变量X的分布函数为F(X)
- 连续型随机变量X的分布函数为:F(x)=A+B*e^(-λx)[x>0,λ>0];0[其他].则A=,B=
- 求二连续型随机变量(X,Y)的分布函数
- 设随机变量X的分布函数F(x)=A+Barctanx,.求
- 已知如图,四边形ABCD中,AB=BC=1,CD=根号3,DA=1,且∠B=90°.
- 鲜为人知的造句
- 请你算一算: 松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个,问这几天中有几天晴天,几天是雨天?
猜你喜欢
- what is important when selling a new porduct?
- 在同一直线上有四点A、B、C、D,AD=九分之五DB,AC=五分之九CB,且CD=4,求AB
- 哪年哪月我国第一颗原子弹爆炸成功
- 设α是第三项限角,问是否存在实数m使得sinα、cosβ是关于方程8乘(X的平方)-6mx+2m+1=0的根?
- 名词解释题:政府公共关系传播
- 一种儿童专用自行车前轮直径是28cm,后轮直径是35cm,后轮行走32圈的路程,则前轮行走了多少圈?算术写出来!
- 一个等腰梯形周长是48Cm面积是96Cm.高是8Cm.梯形的一条腰是多少厘米?
- 20个同学站一排,从左数明明在17位,从右数君君在15位 明明和君君中间有几个同