因为:
lim |
x→0 |
sin3x |
x3 |
f(x) |
x2 |
lim |
x→0 |
sin3x+xf(x) |
x3 |
lim |
x→0 |
| ||
x2 |
所以:
lim |
x→0 |
sin3x |
x |
又:f(x)在x=0的某领域内二阶可导,
所以:f(x),f′(x)在x=0连续,
从而:f(0)=-3.
由
lim |
x→0 |
| ||
x2 |
得:
lim |
x→0 |
| ||
x2 |
又易知:
lim |
x→0 |
3−
| ||
x2 |
lim |
x→0 |
3x−sin3x |
x3 |
lim |
x→0 |
3−3cos3x |
3x2 |
lim |
x→0 |
3sin3x |
2x |
9 |
2 |
故:
lim |
x→0 |
f(x)+3 |
x2 |
9 |
2 |
从而:f′(0)=
lim |
x→0 |
f(x)−f(0) |
x−0 |
lim |
x→0 |
f(x)+3 |
x |
lim |
x→0 |
f(x)+3 |
x2 |
9 |
2 |
将f(x)在x=0处泰勒展开,并由
lim |
x→0 |
f(x)+3 |
x2 |
9 |
2 |
lim |
x→0 |
f(0)+f′(0)x+
| ||
x2 |
9 |
2 |
计算得:
1 |
2 |