> 数学 >
操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:线段BM、MN、NC之间的关系,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得5分.
AN=NC(如图②);②DM∥AC(如图③).
附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.
人气:136 ℃ 时间:2020-04-01 04:22:47
解答
(1)BM+CN=MN证明:如图,延长AC至M1,使CM1=BM,连接DM1由已知条件知:∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,∴∠ABD=∠ACD=90°.∵BD=CD,∴Rt△BDM≌Rt△CDM1∴∠MDB=∠M1DC,DM=DM1∴∠MDM1=(120°-∠MDB)+...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版