已知点P在等边三角形ABC内部,PD垂直AB于D,PE垂直BC于E,PF垂直CA于F,求证:PD+PE+PF为定值.
人气:286 ℃ 时间:2019-08-20 08:51:38
解答
连结AP,BP,CP,则等边三角形ABC由三个小三角形组成
设等边三角形的边长是a,面积是S,则有
S=S(ABP)+S(BCP)+S(CAP)
=(1/2)×AB×PD+(1/2)×BC×PE+(1/2)×CA×PF
=(a/2)×PD+(a/2)×PE+(a/2)×PF
=(a/2)×(PD+PE+PF)
所以PD+PE+PF=2S/a
因为S,a都与P的位置无关
所以PD+PE+PF=定值
推荐
- 如图,自△ABC内的任一点P,作三角形三条边的垂线:PD⊥BC,PE⊥CA,PF⊥AB,若BD=BF,CD=CE. 证明:AE=AF.
- 设p为三角形ABC内一点,D,E,F分别为P到BC,CA,AB所引垂线的垂足,求使BC比PD+CA比PE+AB比PF为最小的P点
- 如图△ABC三边长分别是BC=17,CA=18,AB=19,过△ABC内的点P向△ABC三边分别作垂线PD,PE,PF,且BD+CE+AF=27,求BD+BF的长度.
- 如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=( ) A.8 B.6 C.4 D.3
- 如图,P为等边三角形ABC内任意一点,PD垂直AB于D,PE垂直BC于E,PF垂直AC于F.求PD+PE+PF是定值
- 次氯酸根离子和碳酸根离子哪个水解程度更大?
- 已知椭圆x^2+y^2/b^2=1(b属于(0,1))的左焦点为F,左右顶点分别为AC,上顶点为B,过FBC三点作圆P,其中圆心P的坐标为(m,n) 设F、B、C的坐标分别为(-c,0),(0,b),(1,0 ) 若椭圆的离心率e=二分之根
- the subscriber you dialed is power off 语法
猜你喜欢