已知数列{a
n}中,S
n是它的前n项和,并且S
n+1=4a
n+2,a
1=1.
(1)设b
n=a
n+1-2a
n,求证{b
n}是等比数列
(2)设
Cn=,求证{C
n}是等差数列
(3)求数列{a
n}的通项公式及前n项和公式.
人气:276 ℃ 时间:2019-08-21 01:51:03
解答
(1)Sn+1=Sn+an+1=4an-1+2+an+1∴4an+2=4an-1+2+an+1∴an+1-2an=2(an-2an-1)即:bnbn−1=an+1−2anan−2an−1=2 (n≥2)且b1=a2-2a1=3∴{bn}是等比数列(2){bn}的通项bn=b1•qn-1=3•2n-1∴Cn+1−Cn=an+1...
推荐
猜你喜欢