> 数学 >
求以y1=e^x,y2=xe^x,y3=3sinx,y4=2cosx为特解的四阶常系数齐次线性微分方程
人气:460 ℃ 时间:2020-08-06 20:46:36
解答
∵y1=e^x,y2=xe^x,y3=3sinx,y4=2cosx是所求方程的4个线性无关的特解 ∴所求方程的特征方程的根是r1=r2=1,r3=i,r4=-i==>所求方程的特征方程是(r^2+1)(r-1)^2=0==>r^4-2r^3...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版