设矩阵A=第一行 1,0,0 第二行0,2,1 第三行0,1,2 ,求可逆矩阵P,使P-1AP为对角矩阵.
人气:299 ℃ 时间:2019-12-01 13:34:39
解答
A是一个3阶的实对称矩阵,有3个实特征值分别是:1,1,3,其中特征值1是二重的,要求的可逆矩阵P就是这3个特征值对应的特征向量,求出即可.
这里用到的是线性代数中的如下几个定理:
1.n阶矩阵A能与对角阵相似的充要条件是A有n个线性无关的特征向量.
2.实对称阵A的特征值都是实数.
3.实对称阵的不同特征值对应的特征向量一定是互相正交的.
4.实对称阵A的r重特征值λ一定有r个线性无关的特征向量.
可以参考线性代数或高等代数实对称矩阵相关章节.
推荐
- 设矩阵A=第一行3,2,-2第二行0,-1,0第三行4,2,-3 求可逆方阵P,使P^-1AP为对角矩阵.
- 设矩阵A.第一行负4,负10,0第二行1,3,0第三行3,6,1.求可逆矩阵p使p-1Ap可对角化.帮个忙啊.
- 下列矩阵能否与对角形矩阵相似?若A能与对角形矩阵相似,则求出可逆矩阵P,使得P-1AP为对角形矩阵?
- 求可逆矩阵P及对角矩阵D,使P-1AP=D:A 第一行3,1,0第二行0,3,1,第三行0 0 3
- A=(0 2 -2 2 4 4 -2 4 -3) 求一可逆矩阵P,使P*-1AP为对角矩阵.
- 向左移代表着什么,向右移又代表这什么?代表着速率变化还是怎么?
- 若f(x)=bx²+8x,且f’(1)=2,则b的值等于多少?
- F1F2是双曲线的左右焦点,P是双曲线上的一点,角F1PF2=60度,三角形PF1F2=12√3,且离心率为2,求双曲线的标准方程
猜你喜欢