将cosx在x=π/4处展开成幂级数,求详解.
人气:401 ℃ 时间:2020-03-25 01:57:27
解答
cosx=cos(π/4+x-π/4)
=cosπ/4cos(x-π/4)-sinπ/4sin(x-π/4)
=√2/2 [cos(x-π/4)-sin(x-π/4)]
=√2/2× 【1-(x-π/4)^2/2!+(x-π/4)^4/4!-.-[(x-π/4)-(x-π/4)^3/3!+(x-π/4)^5/5!+.]】
x∈R
推荐
- cosx,e^x怎么展开为幂级数 xx
- x^2 cosx展开成x的幂级数
- 求f(x)=e^x×cosx的幂级数展开式
- 将函数f(x)=cosx展开成x的幂级数````谢谢
- x/(cosx)^2展开成X的幂级数,并求出X^5的系数
- sinx+cosx=根号6/2,0
- "I will never leave
- 如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E是AB的中点,连接EF且CF⊥AD,点E是AB的中点,连结EF(1)AC=6,BC=10求EF的值(2)若△AEF的面积是1,求梯形DBEF的
猜你喜欢