都很难计算的,特别是求极限
∫(a到b)[e^(cx)]dx
底Δx=(b-a)/n
高f(ck)=e^[c*(b-a)*k/n]=e^[(cbk-cak)/n]
和式∑(下k=1上n) e^[(cbk-cak)/n]
这个太复杂,不计了
结果为(1/c)[e^(bc)-e^(ac)]
∫(a到b)cosxdx
底Δx=(b-a)/n
高f(ck)=cos[(b-a)*k/n]=cos[(bk-ak)/n]
和式∑(下k=1上n) cos[(bk-ak)/n]
=(1/2)csc[(b-a)/(2n)]cos[(2bn-2an+b-a-nπ)/(2n)]-(1/2)cos[(b-a-nπ)/(2n)]csc[(b-a)/(2n)]
∴定积分=lim(n→+∞) [(b-a)/n]*∑(下k=1上n) cos[(bk-ak)/n]
=sinb-sina
∫(a到b)sinxdx
底Δx=(b-a)/n
高f(ck)=sin[(b-a)*k/n]=sin[(bk-ak)/n]
和式∑(下k=1上n) sin[(bk-ak)/n]
=(1/2)csc[(b-a)/(2n)]sin[(2bn-2an+b-a-nπ)/(2n)]-(1/2)[(b-a-nπ)/(2n)]csc[(b-a)/(2n)]
∴定积分=lim(n→∞) [(b-a)/n]*∑(下k=1上n) sin[(bk-ak)/n]
=cosa-cosb