反三角函数 恒等式的理解
当x属于[0,1] arcsinx=arccos根号下(1-x^2)
x属于[-1,0] arcsinx=arccos根号下(1-x^2)-π
三角函数正着写看得很明白 反过来就很别扭
人气:470 ℃ 时间:2020-06-13 06:11:23
解答
当x∈[0,1]时,记 t = arcsinx,
则 t∈[0,π/2],sint = x,
此时cost = √(1-x²) ,即得:arcsinx = t = arccos√(1-x²) ;
当x∈[-1,0]时,记 θ = arcsinx,
则 θ∈[-π/2,0],sinθ = x,
此时 cosθ = - √(1-x²) ,
从而 cos(π+θ) = - cosθ = √(1-x²) ,π+θ ∈[π/2,π]
即得:π+ θ= arccos√(1-x²) ,
所以 arcsinx = θ = arccos√(1-x²) - π
推荐
- 求值:sin[1/2arctan(-4/3)]
- 若arcsinx>=1,则x的范围是
- 反三角函数的恒等式是什么?
- 高一数学:反三角函数问题~~~~~
- 高一数学,有关反三角函数的
- 1.The weather forecaster says that there is 10% chance of rain for each day
- △ABC中,∠ACB=90度,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,问DE,AD,BE具有什么等量关系,并证明(分情况讨论)
- 请给几道多项式与多项式相乘的计算题!
猜你喜欢