微积分:设f(x y)=【(xy)^2】/【(x^2+y^2)^3/2 】证明:f(x y)在点(0 0)处连续且偏导数存在 但不可微.
人气:197 ℃ 时间:2020-03-27 12:42:56
解答
按题目的要求还是要补充原点的定义,f(0,0)=0
化为极坐标
f=(r^4* (sin(2θ)/2)^2)/ r^3=1/4 *r (sin(2θ))^2
观察函数图像,结合定义,是不难证明函数的连续性(|f(x)|
推荐
- 数学分析证明题设:f(x,y)=√|xy|,证明⑴f(x,y)在点(0,0)处连续;⑵f(x,y)在点(0,0)处两个偏导数存在
- 设有函数f(x),x>0对任何x和y>0都有f(xy)=f(x)+f(y),且f(1)的导数存在,证明f(x)在x>0上可导
- 设G(x+z*y^(-1),y+z*x^(-1))=0确定了z=f(x,y)证明:x*z对x的偏导数+y*z对y的偏导数=z-xy
- 设G(x+z*x^(-1),y+z*x^(-1))=0确定了z=f(x,y)证明:x*z对x的偏导数+y*z对y的偏导数=z-xy
- 在微积分中,e^xy的偏导数(关于x的偏导数),为什么是ye^xy,而不是e^x加上e^y,
- 在△ABC中,AD为∠BAC的平分线,求证:AB/AC=BD/DC.
- 求所有的三位数,使它除以11所得的余数等于它的三个数字的平方和.
- 解释下列文言文里面的字的意思.
猜你喜欢