设有函数f(x),x>0对任何x和y>0都有f(xy)=f(x)+f(y),且f(1)的导数存在,证明f(x)在x>0上可导
人气:203 ℃ 时间:2019-08-17 23:54:04
解答
f(x)=f(1*x)=f(1)+f(x),即f(1)=0
f(x+Δx)-f(x)=f[x(1+Δx/x)]-f(x)=f(x)+f(1+Δx/x)-f(x)=f(1+Δx/x)
故x>0时
lim[f(x+Δx)-f(x)]/Δx=(1/x)lim[f(1+Δx/x)-f(1)]/(Δx/x)=(1/x)f'(1)
即x>0时,f(x)可导
推荐
- 设函数f(x)在[0,1]上可导,且满足f(1)=0,求证:在(0,1)内至少存在一点ξ,使f′(ξ)=-f(ξ)ξ.(提示:利用中值定理证明).
- 设函数f(x)在[0,1]上具有三节连续导数且f(0)=1, f(1)=2, f'(1/2)=0.证明:(0,1)内至少存在一点a,使│f'''(a)│≥24.
- 如果f(x)为偶函数,且f(0)的导数存在,证明f(x)在x=0处的导数=0
- 若f(x)是偶函数且f'(0)(f(0)的导数)存在,证明:f'(0)=0.
- 如果f(x)为偶函数,且存在,用导数定义证明f'(0)=0
- 王羲之的兰亭序
- 已知直线y=kx+b经过点A(0,-2)
- 为什么地壳、地幔、地核三者之间的组成物质不同
猜你喜欢
- 关于一篇英语小作文
- 一辆汽车在平直的公路上向东快速行驶,一个人在该公路的便道上向东散步,如果以汽车作为参照物,则人
- 水何澹澹,——树木从生,——.——洪波涌起.
- 已知tana=2,求2/3sin^2a+1/4cos^2a
- 关于英语组句结构.
- 李清照为什么如此怀念项羽
- 求一道数学题解析:2,4,7,11,16,22.求第N个数
- 若关于x的不等式(a平方-1)x平方+(a+1)x+1大于0恒成立.求a取值范围