已知数列{an}的前项和为sn,a1=2/9且an=sn*sn-1(n>=2),则a10等于
4/63
人气:455 ℃ 时间:2020-04-10 03:29:16
解答
an=Sn·Sn-1
则Sn-S(n-1)=Sn*S(n-1)
1/S(n-1)-1/Sn=1
1/Sn-1/S(n-1)=-1
可见{1/Sn}是公差为-1的等差数列
首项1/a1=9/2
所以1/Sn=9/2-(n-1)=11/2-n
Sn=2/(11-2n)
an=Sn-S(n-1)=2/(11-2n)-2/(13-2n)
故a10=2/(11-2*10)-2/(13-2*10)=-2/9+2/7=4/63
推荐
- 已知数列的前n项和为Sn,且an=Sn·Sn-1(n>=2),a1=2/9,则a10=
- 若数列﹛an﹜的前N项和为Sn,且an=Sn×S(n-1) (n≥2),a1=2/9,则a10等于几(要过程)
- 已知数列{an}的前n项和为Sn,且an=Sn·Sn-1(n大于等于2,Sn不为0),a1=2/9,则a10=?
- 数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n. (1)设cn=an-1,求证:数列{cn}是等比数列; (2)求数列{bn}的通项公式.
- 在等差数列中,已知a1+a2+.+a10=p,a(n-9)+a(n-8)+.an=q,则该数列的前n项Sn等于?
- 英语翻译
- 提手旁加个吉加个页念什么
- 等差数列 a1+a4=10 a2-a3=-2 此数列前n项和sn=?
猜你喜欢