> 数学 >
若不等式1/(n+1)+1/(n+2)+1/(n+3)+.+1/(3n+1)>a/24 对一切正整数 都成立,求正整数a的最大值,并证明
人气:428 ℃ 时间:2019-08-16 20:56:36
解答
f(n)=1/(n+1)+1/(n+2)+1/(n+3)+.+1/(3n+1)
f(n+1)-f(n)=1/(3n+2)+1/(3n+3)+1/(3n+4)-1/(n+1)
=2/(3n+2)(3n+3)(3n+4)>0
f(n)递增
所以f(n)最小值为f(1)=13/12
1/(n+1)+1/(n+2)+1/(n+3)+.+1/(3n+1)>a/24 对一切正整数 都成立
所以a/24即a/24<13/12
a<26
所以a的最大正整数为25
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版