设函数f(x)可导,且满足f(0)=0,又f'(x)单调减少.证明对x∈(0,1),有f(1)x
人气:102 ℃ 时间:2020-04-12 07:29:50
解答
因为x∈(0,1)则x>0 所以只需验证f(1)
推荐
- 设函数f(x)在区间[0,1]上二阶可导,且f(0)=0,f''(x)>0,证明:f(x)/x在(0,1]上是单调增函数
- 设函数f(x)二阶可导 有f''(x)>0,f(0)=0证明F(x)=f(x)/x,x≠0,F(x)=f(0),x=0是单调增函数
- 设函数f(x)=x+a/x+b(a>b>0)求f(x)的单调区间,并且证明f(x)在其单调区间上的单调性.
- 设在x大于等于0时,函数f(x)满足f(0)=0,其导函数单调递增,证明:F(X)=f(x)\x在x大于0时单调递增
- 设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]上单调增加
- 炕字的读音是什么?并组一个词.
- (26+×)乘15等于600咋解
- 提公因式怎么提呀
猜你喜欢