设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]上单调增加
人气:301 ℃ 时间:2020-02-01 13:10:23
解答
我的证明方法不太好,不过凑合能证出来.由中值定理,F(x)=(f(x)-f(a))/(x-a)=f‘(c) c∈【a,x】对任意x1>x,有(f(x1)-f(x))/(x1-x)=f'(c1) c1∈【x,x1】由于f’‘(x)>0,所以f'(c1)>f(c)即,(f(x1)-f(x))/(x1-x)>...
推荐
- 设函数f(x)可导,且满足f(0)=0,又f'(x)单调减少.证明对x∈(0,1),有f(1)x
- 设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明
- 设在x大于等于0时,函数f(x)满足f(0)=0,其导函数单调递增,证明:F(X)=f(x)\x在x大于0时单调递增
- 设函数f(x)二阶可导 有f''(x)>0,f(0)=0证明F(x)=f(x)/x,x≠0,F(x)=f(0),x=0是单调增函数
- 设函数f(x)在区间[0,1]上二阶可导,且f(0)=0,f''(x)>0,证明:f(x)/x在(0,1]上是单调增函数
- 一座桥长300米,桥的负重150斤,人的体重是145斤,还有两个铁球每个铁球个5斤,人要带着球应该 怎么过桥?
- 若x>0,y>0,且x+2y=4,则1/x+2/y的最小值为 _ .
- 甲乙两地相距200千米 客、货两汽车同时从甲开往乙 客车还有20千米时 货车还有30千米 这样客车行100千米时
猜你喜欢