> 数学 >
已知函数f(x)=1/3x^3+bx^2+cx+d设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f’(x)为f(x)的导函数
满足f'(2-x)=f'(x)
(1)求f(x)
(2)设g(x)=x根号下f‘(x),m>0,求函数g(x)在[0,m]上的最大值
人气:357 ℃ 时间:2019-08-20 10:02:51
解答
1)f'(x)=x^2+2bx+c
f'(2-x)=f'(x),即f'(x)关于x=1对称,因此有:b=-1
与x轴交点处的切线为y=4x-12,设交点为a,则f(a)=0,f'(a)=4
过a的切线为:y=4(x-a)+0=4x-4a=4x-12,所以4a=12,得:a=3
由f'(3)=9-6+c=3+c=4,得:c=1
由f(3)=1/3*27-3^2+3+d=0,得:d=-3
所以有:f(x)=1/3x^3-x^2+x-3
2)g(x)=x√(x^2-2x+1)=x|x-1|
当x>=1时,g(x)=x(x-1)=x^2-x=(x-1/2)^2-1/4,为增函数
x= (1+√2)/2时 m(m-1)>=1/4
因此
若0
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版