> 数学 >
1.已知f(x)=x+b/x-3,x属于[1,2].(1)b=2时,求f(x)值域(2)b>=2时,f(x)>0恒成立,求b的取值范围.
2.(1)若对于任意的n属于N*,总有(n+2)/{n(n+1)}=A/n+B/(n+1)成立,求常数A,B的值
(2)在数列{a小n}中,a小1=1/2,a小n=2a小(n-1)+(n+2)/{n(n+1)},(n>=2,n属于N*),求证{a小n+1/(n+1)}是等比数列,并求通项a小n
人气:157 ℃ 时间:2020-10-01 10:21:59
解答
1、(1)x+b/x >= 2*根号b,且该最小值在x=根号b是取得,因此b=2时,x=根号2使f(x)最小,最小值是2*根号b-3,最大值在1或2取到,将1和2分别带入,f(1)=0,f(2)=0,因此值域是[2*根号b-3,0](2)当24/92、(1)(n+2)/{n(n+1)}=(n+1+1...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版