已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边长为5.
(1)试说明方程必有两个不相等的实数根;
(2)当k为何值时,△ABC是以BC为斜边的直角三角形;
(3)当k为何值时,△ABC是等腰三角形,并求△ABC的周长.
人气:262 ℃ 时间:2019-08-22 19:44:26
解答
(1)证明:∵△=(2k+3)2-4(k2+3k+2)=1,
∴△>0,
∴无论k取何值时,方程总有两个不相等的实数根;
(2﹚当△ABC是以BC为斜边的直角三角形时,有AB2+AC2=BC2
又∵BC=5,两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根.
∴AB2+AC2=25,AB+AC=2k+3,AB•AC=k2+3k+2,
由(AB+AC)2-2AB•AC=25
∴(2k+3)2-2•(k2+3k+2)=25
∴k2+3k-10=0,(k-2)(k+5)=0,
∴k1=2或k2=-5
又∵AB+AC=2k+3>0
∴k2=-5舍去
∴k=2;
(3)∵△ABC是等腰三角形;
∴当AB=AC时,△=b2-4ac=0,
∴(2k+3)2-4(k2+3k+2)=0
解得k不存在;
当AB=BC时,即AB=5,
∴5+AC=2k+3,5AC=k2+3k+2,
解得k=3或4,
∴AC=4或6
∴△ABC的周长为14或16.
推荐
- 已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边长为5. (1)试说明方程必有两个不相等的实数根; (2)当k为何值时,△ABC是以BC为斜边的直角三
- 已知三角形ABC的两边AB,AC的长是关于x的一元二次方程x^2-(2k+3)x+k^2+3k+2=0的两个实数根,第三边BC长为5.问k取何值时,三角形ABC是等腰三角形,并求三角形的周长?
- 已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边长为5. (1)试说明方程必有两个不相等的实数根; (2)当k为何值时,△ABC是以BC为斜边的直角三
- 已知:三角形ABC的两边AB.AC的长是关于x的一元二次方程x^2-(2k+3)x+k^2+3k+2=0的两个实数根
- 已知三角形ABC的两边AB,AC的长是关于x的一元二次方程x^2-(2k+3)x+k^2+3k+2=0的两个实数根,第三边的长为5.
- 甲看一本书,第一天看了全书的40%,第二天看了余下的1/3,第三天看了剩下的160页,这本书多少页
- 英语tag question
- 如图,平行四边形ABCD中,2AB=AD,AB=AE=BF,求证:EC⊥FD
猜你喜欢