已知△ABC的三个内角A、B、C对应的边长为a,b,c,向量m=(sinB,1-cosB)与向量n=(2,0)夹角O余弦值为1/2
1、求角B的大小.2、△ABC外接圆半径为1,求a+c范围
人气:445 ℃ 时间:2019-09-18 05:21:37
解答
1、 由余弦夹角可知:mn/|m||n|=1/2 则2sinB/2√[sinB^2+(1-cosB)^2]=1/2 得(cosB-1)(2cosB+1)=0,可得B=120°或0°(舍去) 2、 sinA+sinC=sin(A+C)/2cos(A-C)/2 因A+B+C=180°.所以A+C=60°.所以上式等于1/2cos(A-C)/2.A-C等于零,即A=C=30°最大值1/2.当A接近60°C接近0°时,最小1/4 但是不能取得,所以sinA+sinC范围为(1/4,1/2] 又因为a=2RsinA,c=2RsinC,R=1 所以a+c的范围是(1/2,1]
推荐
- 已知△ABC的三个内角分别为A,B,C,向量m=(sinB,1−cosB)与向量n=(2,0)夹角的余弦角为1/2. (1)求角B的大小; (2)求sinA+sinC的取值范围.
- 已知向量m=(sinB,1-cosB),且与向量n=(2,0)夹角为π/3,其中A,B,C是三角形ABC的内角
- 已知三角形ABC的三个内角A.B.C对应的边长分别为a.b.c向量,向量m=(sinB,1-cosB)与向量n=(2,0)夹角阿法的余弦值1/2,求角B的大小,若三角形ABC外接圆半径为1,求a+c的范围 帮帮
- 已知向量m=(sinB,1-cosB),且与向量n=(2,0)所成角为π/3,其中 A,B,C是三角形ABC的内角
- 在△ABC中,A,B,C为它的三个内角,设向量p=(cosB/2,sinB/2),q=(cosB/2,-sinB/2),且向量p与向量q的夹角为π/3.
- 把180度数随意分给三个角,让三个角和为180度,这样能组成三角形吗?
- 写五个含有“鼠”字的成语.
- 过热器和再热器按传热方式分为哪几种型式?
猜你喜欢