利用定义证明6π是函数f(x)=2sin(x/3-π/6)的一个周期(过程)
人气:440 ℃ 时间:2019-08-20 04:39:43
解答
f(x+6π)=2sin[(x+6π)/3-π/6]=2sin(x/3+2π-π/6)=2sin(x/3-π/6)=f(x)
所以6π是函数f(x)=2sin(x/3-π/6)的一个周期.
推荐
- 若定义在R上的函数f(x)满足f(x+1)=-f(x),则y=f(x) 是周期函数发,如何证明?
- f(x)是定义在R上函数,且f(x+2)=(1+f(x))/(1-f(x))试证明f(x)为周期函数
- 若f(x)是定义在R上的函数,且f(x+2)=f(-x)[x属于R】,证明f(x)是周期函数
- 若f(x)定义在R上的函数,且f(10+x)=f(10-x),f(20-x)=-f(20+x),证明f(x)为奇函数且周期函数
- 已知y=f(x)是定义在R上的函数,而且对任意x∈R,有f(x+2)[1-f(x)]=f(x)+1成立 1、证明f(x)是周期函数
- 有一种新型的人造地球卫星,它的飞行速度每小时是28440千米,比单极火箭每小时的速度快76%
- 年份前用介词什么?月份前用介词什么?日子前用介词什么?是on还是in?
- 解方程:(1)-7x+2=2x-4;(2)-x=-五分之二x+1;(3)2x-3分之1=-3分之x+2;
猜你喜欢