> 数学 >
在三角形ABC中若sin(2π-A)=√2sin(π+B),√3cos(2π-A)=-√2cos(π+B),求三角形的三个角ABC的大小
人气:224 ℃ 时间:2019-08-20 15:25:25
解答
sin(2π-A)=-sinA, sin(π+B)=-sinB, 所以有sinA=√2sinB
cos(2π-A)=cosA, cos(π+B)=-cosB,所以有√3cosA=√2cosB
将两个式子平方后相加得:2cos²A+1=2,cosA=√2/2(cosA不能取-√2/2,若cosA90°)
得A=45°,代入第一个式子,sinB=1/2,B=30°,则C=105°
望采纳.
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版