S1=1,S2=1+2,S3=1+2+3,…SN=1+2+3+…+N求S1+S2+S3+…+S130
这里急!
人气:143 ℃ 时间:2020-01-30 04:17:46
解答
SN=N(1+N)/2=N/2+N*N/2,也就是说一个等差数列N/2和一个等比数列N*N/2的和,分别求和再相加即可.
推荐
- 设S1=1+1/(1^2)+1/(2^2),S2=1+1/(2^2)+1/(3^2),S3=1+1/(3^2)+1/(4^2).Sn=1+1/[n^2+1/(n+1)^2].设S=√S1+√S2+√S3+.+√Sn,则S=?(用含n的代数式
- Sn=n^2+2n 求1/S1+1/S2+1/S3+……+1/Sn
- 已知a+b=1,ab=-1,设S1=a+b,S2=a方+b方,S3=a三次方+b三次方……,Sn=a的N次+b的N次
- 数学高手 请举手之劳 数学题:设S1=1+1/1^2+1/2^2,S2=1+1/2^2+1/3^2,S3=1+1/3^2+1/4^2.Sn=1+1/n^2
- 已知α+β=1,αβ=-1.设S1=α+β,S2=α2+β2,S3=α3+β3,…,Sn=αn+βn (1)计算:S1=_,S2=_,S3=_,S4=_; (2)试写出Sn-2、Sn-1、Sn三者之间的关系; (3)根据以上得出结论计算:α
- 设随机变量X的概率密度为f(x) ,Y=-2X+3,则Y的概率密度函数
- 浓硝酸应盛放在广口瓶吗
- 在论文中and/or 应该怎么翻译
猜你喜欢