(1)由已知得,a,b是二次方程x^2=2-2x的两个根,由根与系数的关系得
a+b=-2,ab=-2,
所以 a/b+b/a=(a^2+b^2)/(ab)=(2-2a+2-2b)/(-2)=(4-2*(-2))/(-2)=-4,
(2)根据两个方程的系数得,第一个方程的两根如果是 p1,p2,则第二个方程的两个根是1/p1,1/p2,且由根与系数关系得 p1+p2=2,p1*p2=-5.
又由于 p与1/q不等,
所以 p^2+1/q^2=p1^2+p2^2=(p1+p2)^2-2p1*p2=2^2-2*(-5)=14.