> 数学 >
求y=x/√x^2+1的微分,难难难难难难难难难
人气:488 ℃ 时间:2020-06-08 02:05:10
解答
y'=[√(x^2+1)-x/√(x^2+1)]/(x^2+1)=[x^2+1-x]/[(x^2+1)√(x^2+1)]
微分dy=[x^2+1-x]/[(x^2+1)√(x^2+1)]dx答案是(x^2+1)^-3/2 dx答案是(x^2+1)^-3/2 dx哦,我中间有一步算错了,少算了(x^2+1)'=2x了。y'=[√(x^2+1)-x/2√(x^2+1)*2x]/(x^2+1)=[x^2+1-x^2]/[(x^2+1)√(x^2+1)]=1/[(x^2+1)√(x^2+1)]微分dy=1/[(x^2+1)√(x^2+1)]dx哦,谢谢你啦
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版