> 数学 >
设常数a>0,(ax-
1
x
)5
展开式中x3的系数为-
5
81
,则a= ___ ,
lim
n→∞
(a+a2+…+an)
= ___ .
人气:155 ℃ 时间:2020-05-22 03:46:00
解答
(1)由Tr+1=c5r(ax)5-r(-
1
x
r,整理得Tr+1=(-1)rc5ra5-rx5-2r
r=1时,即(-1)c51a4=-
5
81
,∴a=
1
3
.故答案为
1
3

(2)方法1:令sn=a+a2+…+an=
a×(1-an)
1-a

lim
n→∞
(a+a2+…+an)=
lim
n→∞
a×(1-an)
1-a
=
a
1-a
(∵a<1时,
lim
n→∞
an=0)
=
1
3
1-
1
3
=
1
2

故答案为
1
2

方法2:由a=
1
3
,可知数列a,a2…an是递降等比数列,
lim
n→∞
(a+a2+…+an)表示无穷递降等比数列的各项和,
由无穷递降等比数列的各项和公式(
lim
n→∞
sn=
a1
1-q

可知
lim
n→∞
(a+a2+…+an)=
a
1-a
1
3
1-
1
3
=
1
2

故答案为
1
2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版