(1)对于任意x
f(x)=f[a+(x-a)]
=f[a-(x-a)](利用了f(a+x)=f(a-x))
=f(2a-x)
=f[b+(2a-x-b)]
=f[b-(2a-x-b)](利用了f(b+x)=f(b-x))
=f[(2b-2a)+x]
由于a≠b
因此f(x)是周期函数
|2b-2a|是其中一个周期
(2)对于任意x
f(x)=f[a+(x-a)]
=-f[a-(x-a)](利用了f(a+x)=-f(a-x))
=-f(2a-x)
=-f[b+(2a-x-b)]
=f[b-(2a-x-b)](利用了f(b+x)=-f(b-x))
=f[(2b-2a)+x]
由于a≠b
因此f(x)是周期函数
|2b-2a|是其中一个周期