已知xyz=1,求x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)的值
要理由
人气:160 ℃ 时间:2019-08-20 06:10:23
解答
xyz=1
所以
z=1/xy
xz=1/y
yz=1/x
x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)
=x/(xy+x+1)+y/(1/x+y+1)+(1/xy)/(1/y+1/xy+1)
第二个分子分母同乘以x
第三个分子分母同乘以xy
=x/(xy+x+1)+xy/(xy+x+1)+1/(xy+x+1)
=(xy+x+1)/(xy+x+1)
=1
推荐
- 急用,等答案.若xyz=1,求 (x/xy+x+1)+(y/yz+y+1)+(z/xz+z+1) 的值
- 已知三个数x,y,z,满足xy/x+y=-2.yz/y+4=4/3,zx/z+x=-4/3,则xyz/xy+xz+yz=?
- x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)=?其中 xyz=1
- XYZ-XY-XZ+X-YZ+Y+Z-1
- 已知xy(x+y)^-1=1,yz(y+z)^-1=2,xz(z+x)^-1=3,试求xyz(xy+yz+xz)^-1的值
- 如图 已知D.E.F三点分别在ABC的三边上 且DE//BC AD比DB=1/2 (1)求DEF的面积 比 ABC的面积
- they can't see clearly because their eyesight is poor
- 曾经去过某地的英语作文,最好是北京的,字数60词
猜你喜欢