已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?
人气:385 ℃ 时间:2019-08-20 14:41:21
解答
由f(-1)=-2,得:f(-1)=1-(lga+2)+lgb=-2,解之得:lga-lgb=1,∴ab=10,a=10b.又由x∈R,f(x)≥2x恒成立.知:x2+(lga+2)x+lgb≥2x,即x2+xlga+lgb≥0,对x∈R恒成立,由△=lg2a-4lgb≤0,故得(1+lgb)...
推荐
- 已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?
- 已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?
- 已知f(m)=㎡+(lga+2)x+lgb,f(-1)=-2.当x∈R,f(x)≥2x恒成立,求实数a的值与f(x)的最小值.
- 已知f(x)=x的平方+(lga+2)x+lgb,f(-1)=--2,当x∈R时f (x)≥2x恒成立,求实数a的值.
- 已知f(x)=x^2+(lga+2)x+lgb,f(-1)=-2,当x∈R时,f(x)≥2x恒成立.求a,并求此时f(x)的最小值
- 英语翻译
- 诗是:粉身碎骨浑不怕,要留清白在人间.这是化学上的 哪个反应?
- 《中国人失掉自信力了吗》阅读开头两段,说说对方论点、论据是什么
猜你喜欢