已知函数f(x)满足f(x+y)+f(x-y)=2f(x)•f(y) (x∈R,y∈R),且f(0)≠0,试证明f(x)是偶函数.
人气:414 ℃ 时间:2020-01-27 10:24:35
解答
证明:令x=y=0
∵f(x+y)+f(x-y)=2f(x)•f(y)
∴f(0)+f(0)=2f(0)•f(0)
∵f(0)≠0,
∴f(0)=1
令x=0
∵f(x+y)+f(x-y)=2f(x)•f(y)∴f(y)+f(-y)=2f(0)•f(y)
∴f(-y)=f(y)
即f(x)是偶函数
推荐
- 已知函数f(x)满足f(x+y)+f(x-y)=2f(x)•f(y) (x∈R,y∈R),且f(0)≠0,试证明f(x)是偶函数.
- f(x+Y)+f(x-y)=2f(x)f(Y) 求其是偶函数 急
- 已知函数f(x)满足f(x+y)+f(x-y)=2f(x)•f(y) (x∈R,y∈R),且f(0)≠0,试证明f(x)是偶函数.
- 已知函数f(x+y)+f(x-y)=2f(x),且f(0)≠0,证明f(x)为偶函数
- 函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y),其定义域为R,求证f(x)为偶函数(f(x)≠0).
- 改错题:Accustomed to getting up early,the new schedule was not difficult for him to adjudt to.
- some,on,in,places,can,people,walk,fire 重新排列单词,组成句子
- (X+2)(X-4)=0 用因式分解法解一元二次方程
猜你喜欢