>
数学
>
已知△ABC与△ADE均为等边三角形,点A、E在BC的同侧.
(1)如图1,点D在BC上,写出线段AC、CD、CE之间的数量关系,并证明;
(2)如图2,若点D在BC的延长线上,其它条件不变,直接写出AC、CD、CE之间的数量关系.
人气:132 ℃ 时间:2019-08-18 14:44:49
解答
(1)CD+CE=AC.理由如下:
∵△ABC为等边三角形,
∴AB=AC=BC,∠BAC=60°,
∵△ADE为等边三角形,
∴AD=AE,∠DAE=60°,
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE,
在△BAD和△CAE中
AB=AD
∠BAD=CAE
AD=AE
,
∴△ABD≌△ACE(SAS),
∴BD=CE,
∴BC=BD+DC=CE+CD,
∴AC=CD+CE;
(2)CE-CD=AC.理由如下:
与(1)的证明方法一样可得到△ABD≌△ACE(SAS),
∴BD=CE,
∴BC=BD-CD=CE-CD,
∴AC=CE-CD.
推荐
在等边三角形ABC中,DE//BC.角ADE是等边三角形吗?
如图,在边长为4的正三角形ABC中,AD⊥BC于点D,以AD为一边向右作正三角形ADE. (1)求△ABC的面积S; (2)判断AC、DE的位置关系,并给出证明.
已知△ABC与△ADE均为等边三角形,点A、E在BC的同侧. (1)如图1,点D在BC上,写出线段AC、CD、CE之间的数量关系,并证明; (2)如图2,若点D在BC的延长线上,其它条件不变,直接写出AC、C
如图,在等边△ABC中,点D是BC边的中点,以AD为边作等边△ADE. (1)求∠CAE的度数;(2)取AB边的中点F,连接CF、CE,试证明四边形AFCE是矩形.
已知△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE的一边DE交直线a于点E,∠ADE=60°,若D在BC上,求证:CD+CE=CA.
蝌蚪、青蛙的呼吸器官分别是?
什么是间接引语,什么是直接语?什么是“将间接引语改成直接引语?”
把下面的句子改写成提示语在前面的句子.
猜你喜欢
今年,同学们植树80棵,比去年多植1/7,去年植树多少棵?
某工程队计划三天运完一堆沙,第第一天运了总数的30%,第二天比第三天多210吨,第二天和第三天运的吨数比是8:5,这堆沙一共有多少吨?
求好心人帮忙做几道英语的填空题
若cos(x-40°)=cos(x+20°)+cos(x-20°),则tanx的值______.
0.83g/cm^3怎么换成kg/m^(-3)
须鲸大还是齿鲸大
什么叫拓扑学?
矩阵秩与特征值关系问题
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版