设{an},{bn}是两个数列,点M(1,2),An(2,an),Bn(n-1/n,2/n)为平面直角坐标系内的点.对任意的n属于N*,点
点M,An,Bn三点一线,且数列{bn}满足a1b1+a2b2+.+anbn/a1+a2+.+an=2n-3.
(1).且数列{an}的通项公式;
(2).求证:点p1(1,b1),p2(2,b2),...pn(n,bn)在同一条直线上;
(3).奇数列{an},{bn}的前m项和分别Am和Bm,对任意自然数n,是否总存在与n相关的自然数m,使得anBn=bnAm?若存在,求出m与n的关系,若不存在,请说明理由.
人气:106 ℃ 时间:2019-08-20 13:29:25
解答
题目有问题吧,(3)应该是anBm=bnAm
(1)两种思路如上回答
(2)证明:由an=2n得:a1+a2+.+an=n(n+1)
因为a1b1+a2b2+.+anbn/a1+a2+.+an=2n-3,则
a1b1+a2b2+.+anbn=n(n+1)(2n-3)
从而,可得:
a1b1+a2b2+.+an-1b-1n=n(n-1)(2n-5)
以上两式相减得:anbn=2n(3n-4)
则bn=3n-4,b1=-1
而(bn-b1)/(n-1)=3为常数(n属于N*),
所以,点p1(1,b1),p2(2,b2),...pn(n,bn)在同一条直线上.
(3)假设存在符合题意的m,则
Am=a1+a3+...+a2m-1
=2[1+3+...(2m-1)]
=2mm
同理,得:Bm=m(3m-4)
由anBm=bnAm,得:
2nm(3m-4)=2mm(3n-4)
整理,得:
m=n符合题意,故,假设成立,
从而,对任意自然数n,是否总存在m=n,使得anBm=bnAm.
推荐
- 已知数列{an}{bn},点M(1,2)An(2,an),Bn((n-1)/n,2/n)对于n为正整数,M,An,Bn在同一直线上,求{an}通项
- 设bn=(an+1/an)^2求数列bn的前n项和Tn
- 已知数列{an}和{bn}满足a1=m,a(n+1)=λan+n,bn=an-2n/3+4/9 (1)当m=1时,求证:于任意的
- 设数列{an}的前n项和Sn=n2,数列{bn}满足bn=anan+m(m∈N*). (Ⅰ)若b1,b2,b8成等比数列,试求m的值; (Ⅱ)是否存在m,使得数列{bn}中存在某项bt满足b1,b4,bt(t∈N*,t≥5)成等差数列?若存
- 已知数列{an}和{bn}满足a1=m,an+1=λan+n,bn=an−2n/3+4/9. (1)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列; (2)当λ=−1/2时,试判断{bn}是否为等比数列.
- 把180度数随意分给三个角,让三个角和为180度,这样能组成三角形吗?
- 写五个含有“鼠”字的成语.
- 过热器和再热器按传热方式分为哪几种型式?
猜你喜欢