已知数列{an}和{bn}满足a1=m,a(n+1)=λan+n,bn=an-2n/3+4/9 (1)当m=1时,求证:于任意的
已知数列{an}和{bn}满足a1=m,a(n+1)=λan+n,bn=an-2n/3+4/9
(1)当m=1时,求证:于任意的实数λ,{an}一定不是等差数列
(2)当λ=-1/2时,试判断{bn}是否为等比数列
很急第一问求简单的办法
人气:182 ℃ 时间:2019-10-19 21:06:22
解答
用a(k)表示数列第k项
当m=1,a(1)=1;
当n=1;a(1+1)=λa(1)+1,即是a(2)=λ+1,
当n=2时,a(2+1)=λa(2)+2,就是a(3)=λ(λ+1)+2;
显然对任何实数λ ,a(3)-a(2)不等于a(2)-a(1) 证毕λ为0呢如果a为等差数列,则 a(3)-a(2)=a(2)-a(1),即 λ(λ+1)+2-(λ+1)=(λ+1)-1 , 整理得:λ*λ-λ+1=0易知该方程无实数解故对任何实数λ,a都不是等差数列当λ=0时,a(3)-a(2)=1,a(2)-a(1)=0, a不是等差数列
推荐
- 已知数列{an}和{bn}满足a1=m,an+1=λan+n,bn=an−2n/3+4/9. (1)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列; (2)当λ=−1/2时,试判断{bn}是否为等比数列.
- 设数列{an}满足a1=,an+1-an=3*2的2n-1 求数列{an通项公式 令bn=nan.求数列{bn}的前n项和
- 设数列{an}满足a1=2,an+1-an=3*2^2n-1 (1)求数列{an}的通项公式 (2)b=nan,求数列{bn}的前n项和Sn
- 数列{an}中,a1=1,an,an+1是方程x2-(2n+1)x+1bn=0的两个根,则数列{bn}的前n项和Sn=( ) A.12n+1 B.1n+1 C.n2n+1 D.nn+1
- 设数列满足a1=2,an+1-an=3•22n-1 (1)求数列{an}的通项公式; (2)令bn=nan,求数列{bn}的前n项和Sn.
- 1.一直A、B、D的坐标分别是(0,1),(-5,1),(7,2)且DC//AB,BC⊥AB(这些上面都有这个符号→),求点C的坐标.
- 饮湖上初晴后雨描写景物的顺序
- 时针转动15分钟是几度
猜你喜欢