给个思路就好了
已知椭圆x^2/a^2+y^2/b^2=1的两个焦点分别为F1(-c,0),F2(c,0)过点E(a^2/c,0)的直线与椭圆相较于A,B两点,且F1A//F2B,|F1A|=2|F2B|
(1)求椭圆离心率
(2)直线方程AB
人气:205 ℃ 时间:2020-03-15 00:30:28
解答
(1)绝对弄错了,应该是|F2B|=2|F1A|,你画个图 就知道题目说的有问题
F1A//F2B,则△EAF1∽△EBF2
|EF1|/|EF2|=|F1A|/|F2B|=1/2
|EF1|=a²/c-c,|EF2|=a²/c+c
得a²=3c²
则e=c/a=√3 /3
(2)设A(x1,y1)B(x2,y2),分别过A、B作右准线的垂线AC与BD,B作左准线的垂线BH
△EAF1∽△EBF2,则y2=2y1(相似三角形对应高之比等于相似比)
则,|BD|=2|AC|,根据椭圆第二定义
B到左准线的距离|BH|=|BF2|/e,A到右准线的距离|AC|=|AF1|/e
|F2B|=2|F1A|,|BH|=2|AC|
故|BH|=|BD|,B点到左右准线的距离相等,则B必然在y轴上,
则B的坐标为(0,b)
直线AB经过点E(a²/c,0),点B(0,b),e=√3/3,AB斜率k=-bc/a²=-√2/3
则其方程为y=-√2/3+b
推荐
- 已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在点P使asin∠PF1F2=csin∠PF2F1,则该椭圆的离心率的取值范围为( ) A.(0,2-1) B.(22,1) C.(
- 已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=√2/2,左、右焦点分别为F1.F2,定点p(2,√3),且|F1F2|=|PF2
- 设F1,F2分别为椭圆C:(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左,右焦点,过F2的直线L与椭圆C相交于A,B两点,直线L
- 已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交于A、B两点,且|AB|=3,则C的方程为( ) A.x22+y2=1 B.x23+y22=1 C.x24+y23=1 D.x25+y24=1
- 已知F1 F2是椭圆C:X^2/a^2 y^2/b^2=1(a>b>0)的两个焦点,P为椭圆C上一点,且PF1⊥PF2.若△PF1F2的面积为9,则b=?
- 8 8 8 8 8 8 8 8 8=9999
- 两个点电荷相距L.一个带正电,大小为Q1,另一个带负电,大小为Q2,Q1=Q2.E1和E2分别表示两个点电荷的电场
- If you were a teardrop in my eyes ,for fear losing you ,I would never cry.
猜你喜欢