π |
4 |
tana+1 |
1−tana |
1 |
3 |
∴tana=-
1 |
2 |
因此,
(sina−cosa)2 |
cos2a |
sin2a−2sinacosa+cos2a |
cos2a−sin2a |
分子分母都除以cos2a,得
(sina−cosa)2 |
cos2a |
tan2a−2tana+1 |
1−tan2a |
故答案为:3
π |
4 |
1 |
3 |
(sina−cosa)2 |
cos2a |
π |
4 |
tana+1 |
1−tana |
1 |
3 |
1 |
2 |
(sina−cosa)2 |
cos2a |
sin2a−2sinacosa+cos2a |
cos2a−sin2a |
(sina−cosa)2 |
cos2a |
tan2a−2tana+1 |
1−tan2a |