6x2+12x+10 |
x2+2x+2 |
6(x2+2x+2)−2 |
x2+2x+2 |
2 |
x2+2x+2 |
2 |
(x+1)2+1 |
∵(x+1)2≥0,
∴(x+1)2+1≥1,
即
1 |
(x+1)2+1 |
2 |
(x+1)2+1 |
2 |
(x+1)2+1 |
∴
6x2+12x+10 |
x2+2x+2 |
故选A.
6x2+12x+10 |
x2+2x+2 |
6x2+12x+10 |
x2+2x+2 |
6(x2+2x+2)−2 |
x2+2x+2 |
2 |
x2+2x+2 |
2 |
(x+1)2+1 |
1 |
(x+1)2+1 |
2 |
(x+1)2+1 |
2 |
(x+1)2+1 |
6x2+12x+10 |
x2+2x+2 |