1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+···+1/(x+2010+(x+2011)
人气:410 ℃ 时间:2019-10-23 11:50:13
解答
原式=1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+……+1/(x+2010)-1/(x+2011)
=1/x-1/(x+2011)
=2011/x(x+2011)
推荐
- 若x+x^2+x^3=-1 则x^2012+x^2011+x^2010+x^2009+…………+x^3+x^2+x+1=
- 当x=2,1/2,3,1/3,4,1/4,…,2010,1/2010,2011,1/2011,时,
- (1-2)x(2-3)x(3-4)x.x(2009-2010)x(2010-2011)
- 计算1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+2010)(x+2011)
- 计算:1/x(x+1) + 1/(x+1)(x+2) + 1/(x+2)(x+3) +.+1/(x+2010)(x+2011)
- 1/13的分子和分母同时加上_后就可以约分为1/3.
- 以AB线段为底边的等腰三角形,它两底角平分线交点的轨迹是什么?
- 求歪歪接待词~^^~
猜你喜欢