> 数学 >
如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,请判断△ADE是不是等边三角形,并说明理由.
人气:406 ℃ 时间:2019-10-10 00:53:09
解答
△ADE是等边三角形,
证明:∵△ABC是等边三角形,D为边AC的中点,
∴BD⊥AC,即∠ADB=90°,
由AE⊥EC知∠AEC=90°,
∵在Rt△ABD和Rt△ACE中
BD=EC
AB=AC

∴Rt△ABD≌Rt△ACE(HL),
∴AD=AE,
因D为边AC的中点,由AE⊥EC知∠AEC=90°,
∴AD=DE,
∴AD=AE=DE,即△ADE是等边三角形,
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版