>
数学
>
如图,以等腰△ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE⊥AC,垂足为E.
(I)求证:DE为⊙O的切线;
(II)若⊙O的半径为6,∠BAC=60°,求DE的长.
人气:324 ℃ 时间:2019-08-13 16:32:46
解答
(Ⅰ)证明:连接OD、AD,如图,
∵AB为⊙O的直径,
∴∠ADB=90°,即AD⊥BC,
∵△ABC为等腰三角形,
∴DB=DC,
而OA=OB,
∴OD为△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE为⊙O的切线;
(Ⅱ)∵∠BAC=60°,
∴△ABC为等边三角形,
∴∠B=∠C=60°,
∴△OBD为等边三角形,
∴BD=OB=6,
∴CD=6,
在Rt△CDE中,CE=
1
2
CD=3,
∴DE=
3
CE=3
3
.
推荐
如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问: (1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上
如图,以等腰△ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE⊥AC,垂足为E. (I)求证:DE为⊙O的切线; (II)若⊙O的半径为6,∠BAC=60°,求DE的长.
如图,以等腰△ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE⊥AC,垂足为E. (I)求证:DE为⊙O的切线; (II)若⊙O的半径为6,∠BAC=60°,求DE的长.
如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.
如图:等腰△ABC,以腰AB为直径作⊙O交底边BC于P,PE⊥AC,垂足为E. 求证:PE是⊙O的切线.
蚂蚁在地球生活了多少年?
某工程由甲乙丙单独做各需10天、15天、20天,现在三人合作,中途甲休息2天,乙休息3天,最后丙休息了4天,
请翻译下这句英文是什么意思
猜你喜欢
2010年东城物理二模,第12、16、37、38,
高二 概率
一根铝合金柜条,计划做20个三角形镜柜,后来每个镜柜边长要求减少2cm,结果多做5只这根铝合镜柜条长多少
数学上海作业六年级下的答案(全部)
he did his best ______chinese,now he can speak a lot .a.to talk b.tp forget c.to learn d.to say
Bob Hope 中文名
辩论结果比过程重要
the E__ book is on the desk填空 there is a t__behind the TV
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版